

Research Seminar - ENCI-LowCarb Project CIRED, Paris - 16 March, 2012

Acceptance and Economic assessment of Low carbon scenarios

A participatory approach applied to France

Ruben Bibas and Sandrine Mathy - CIRED, France Centre International de Recherche sur l'Environnement et le Développement

Proceedings at http://www.lowcarbon-societies.eu/

Acceptance and Economic assessment of Low carbon scenarios

- 1. Methodology: steps towards a "collaborative scenario design"
- 2. An acceptable low carbon energy scenario for France
 - Residential Sector
 - Transport sector
 - Electricity sector
 - Macroeconomic impacts
- 3. Reconciling stakeholders' acceptance and ambitious climate objectives : Other determinants and Factor Four
- 4. Conclusion

The need for involving stakeholders

Standard modeling approach: "objective" expert-based arguments

Stakeholders: private companies, ministries, associations (NGOs as well as consumers associations), trade unions, banks

"Why is stakeholders involvement important when discussing energy scenarios?"

- To add other dimensions:
 - Political and social
 - Practical solutions

Two main principles:

- **Realism**: Satisfying technical and economic limits
- Acceptance: Maximum degree of stakeholders' acceptance

Project outline

- 1. Experts' meetings
 - Residential / Transport / Electricity
- 2. Identification of national stakeholders
- 3. Sectoral stakeholders' meetings
 - Residential / Transport / Electricity
- **4. Translation** of stakeholders' contributions into model parameters
- 5. Cross-sectoral feedback seminar

Methodology: Collaborative creation scenario process

The big challenge: the translation process

Example of the translation process: residential sector – refurbishment

Obstacle to refurbishment:

Access to tax reductions and subsidies conditioned to high personal contribution Access to zero-interest loan difficult without collaterals

Stakeholders' recommendation to overcome obstacle: Obligatory refurbishment fund for jointly-owned buildings Long-term third-party financing

Translation into the model parameters: Reduction of "risk-aversion level" for refurbishment

An acceptable
low carbon
energy scenario
for France

Global context and world visions Benchmark assumptions

- Stability of **consumption** styles (preference among goods and origin)
- Energy demand and fossil energy prices
 - Crude oil prices reach 160 €/barrel in 2050 (energy prices from World Energy Outlook, AIE 2011)

	2050/2010
Crude oil	x 2.38
Natural Gas	x 2.38
Coal	x 2.17

- Technological innovation focuses
 - Renewables
 - Energy efficiency
 - Carbon Capture and Storage

Residential sector

Tax credits for energy efficiency	Uniform tax rebate of 30% of investment
Zero-interest loans for retrofitting	Up to 30,000€/dwelling for 10-15 years
Thermal regulation for new buildings	50 kWh/m2 after 2012 Net producers after 2020
Obligatory renovation funds for jointly-owned buildings	Reduction of risk aversion
Third-party financing	Reduction of risk aversion
Biogas	Up to 17% of gas in 2050
Carbon tax (€/tCO2)	32 in 2012 56 in 2020 100 in 2030 300 in 2050
Progressive tariff	Consumption above 60 kWh/m2

Energy labels transitions

Residential consumption (TWh)

c€/kWh	2010	2020	2050
Electricity	12	16	15
Gas	6	11	18
Fuel oil	12	18	25
Wood	4	5	6

Between 2010 and 2050

- 1. + 37% total residential surface (m²)
- 2. Total final energy consumption decreases : -37%
- 3. Final energy consumption (heating and other uses) per capita : -50%
- 4. CO2 emissions (excluding electricity emissions included in the power sector) : -75%

Investment and policy costs

	2020	2030	2040	2050		
Policy measures costs for the govenement (billion €)						
Tax credit	3.3	2.5	0.8	0.5		
Eco-loan	3.3	1.9	0.6	0.4		
Additional costs for households (Billion €)						
Construction	9.5	9.4	7.7	6.3		
Refurbishment	14.9	10.3	3	1.8		

Transport sector

Urban planning	Slow down of urban sprawl until 2030 Urban density increasing after 2030
Teleworking	1 in 10 days: reducing constrained mobility (commuting)
Vehicles occupation rate	1.25 to 1.5 in urban areas
Kerosene tax	400€/toe from 2012
Heavy trucks eco-tax	1.2 bn € in 2012
Urban transports investment	Doubled for 20 years after 2012 (3 bn €/yr for 20 years)
Rail investment program	3 bn €/yr for 20 years
Road investment	Collective transports investment deducted
Bonus-Malus	Up to 2050 with neutral financial balance
Logistics	1% annual decoupling of freight transport needs
Infrastructures	20% modal share of rail transport in terrestrial freight in 2030
Biofuels	5 Mtoe in 2020 (9% share) 16 Mtoe in 2050 (39% share)
Carbon tax (€/tCO2)	32 in 2012 / 56 in 2020 100 in 2030 / 300 in 2050

Passengers transport

Emissions in passengers transports -66%

Freight transport

Emissions freight transports -40%

Investment and policy costs in the transport sector

	2010	2020	2030	2040	2050	
Fiscal	Fiscal measures (billion €)					
Heavy trucks eco-tax	0	1.3	1.1	1.1	1.2	
Kerosene tax	0	1.6	1.1	1.4	1.3	
Impact on domestic consumption tax on petroleum products	23.8	21.4	17.9	13.4	12.9	
Carbon tax	0	13.7	18.1	23.9	34.8	
Investments on infrastructures						
Urban transports	+3 billion € each year from 2012 until 2030					
Railways	+3 billion € each year from 2012 until 2030					
Road transports	-6 billion € each year from 2012 until 2030					

Electricity sector

Feed-in tariffs	Decrease over time Until renewable competitiveness
Demand-side management	Implicit measures to flatten load Explicit measures for residential (heating)
Interdiction of electric heating	De facto after 2012 (for Joule effect)
Grid reinforcement	Additional 3€/MWh
Existing nuclear lifetime extension	+20 years for 40 GW existing nuclear plants
Technologies acceptance	All, but shale gas
Carbon tax (€/tCO2)	32 in 2012 56 in 2020 100 in 2030 300 in 2050
Progressive tariff	Consumption above 60 kWh/m2

Peak at + 41% in 2020 compared to 2010.

The peak in prices around 2020 is due to the combination of :

- (i) the penetration of gas combined cycle replacing some of the nuclear capacities
- (ii) the acceleration in the installation of renewable capacities
- (iii) the oil-fuelled turbine to face the variability of renewables

Stabilization around 160€/MWh (16c€/kWh), e.g. an increase of 34% compared to 2011

Investment and policy cost in the power sector

Average annual expenditures for electricity generation (Billion ${f \in}$)						
Period	2011-2020	2021-2030	2031-2040	2041-2050		
Investment	12	15	9	6		
Fuel costs	1	1.4	0.1	0.6		
Carbon costs	8.7	10.9	2.8	3.5		

Fiscal measures (Billion €)					
Feed-in tariffs	2010	2020	2030	2040	2050
Additionnal					
CSPE Income					
=	2.9	1.9	7.2	17.8	12.7
feed-in tariffs					
expense					
Carbon Tax	0	13.7	18.1	23.9	34.8

47 - Sectoral CO₂ emissions

48 - Comparison of the mitigation scenario emission trajectory to Factor Four trajectories

CO₂ sectoral emissions compared to 2010 (mitigation scenario)

	2020	2030	2040	2050
Industry	-33%	-37%	-59%	-57%
Manufacture and services	-36%	-39%	-49%	-49%
Agriculture	-24%	-30%	-42%	-40%
Transport	-19%	-35%	-55%	-60%
Residential	-44%	-62%	-72%	-75%
Electricity	49%	-68%	-100%	-86%
Total	-15%	-39%	-59%	-60%
Total (compared to 1990)	-31%	-50%	-67%	-68%
		·	-	

Macroeconomic impacts

Macreconomic trends in Mitigation scenario / Reference (base 1 in 2010)

GDP Unemployment Annual average GDP growth rate 2010-2020 2020-20 Peference 119 129

	2010-2020	2020-2030	2030-2050	2010-2050
Reference	1.19	1.29	1.2	1.22
Mitigation	1.24	1.47	1.11	1.24

40 - Evolution of the net energy import intensity of the GDP

Households expenditures

Recycling of the carbon tax incomes

Emissions reductions and emissions scope

Emissions reduction scope (compared to 1990)

French consumption-related greenhouse gas (GHG) emissions

French domestic GHG emissions

French domestic CO₂ emissions

-68% -46% -29%

Emissions reductions of the scenario depending on the scope

How to reach a Factor Four?

2 ADDITIONAL MEASURES

- A carbon-energy tax (CET)
- Refurbishment obligation

Sectoral emissions reductions / 2010				
	2020	2050		
Industry	- 28%	- 59%		
Manufacture and services	- 38%	- 69%		
Agriculture	- 26%	- 66%		
Transport	- 23%	- 62%		
Residential	- 46%	- 83%		
Electricity	13%	- 93%		
Total	- 20%	- 93%		
Total compared to 1990	- 36%	- 73%		

How to reach a Factor Four?

GDP average growth rate		2010- 2020	2020- 2030	2030- 2050
Reference scenario		1.19	1.29	1.2
Additional	Transfer to HH	1.23	1.42	1.04
measures	neasures Payroll taxes	1.24	1.42	1.05
scenario	EE and RNE	1.23	1.42	1.04

Higher short/middle term GDP growth
Lower GDP growth on the long term
All recycling options equivalent

Average unemployment rate over the period / reference scenario

Additional	Transfer to HH	-0.2%
measures	Payroll taxes	-1.3%
scenario	EE and RNE	-0.2%

1. Lower unemployment rate
2. Lowest unemployment
with Payroll Taxes recycling

1. Lower energy budget share				
after 2020				
2. Even when taking into				
account construction and				
refurbishment overcosts				

Total energy budget share /	2020	2030	2050
reference scenario	0%	- 4%	- 25%

Other determinants

• Fossil energy prices

	Year	low (-30%)	central	high (+30%)
GDP/corresponding	2030	+1.2%	+2.2%	+3.5%
reference	2050	-0.3%	+0.6%	+1.9%
CO2 omissions $/1000$	2020	-25%	-31%	-31%
COZ emissions/1990	2050	-60%	-68%	-74%

• Industrial and consumption styles variants

2050	Reshoring	Decoupling	BTA	BTA + reshoring + decoupling
GDP/mitigation scenario	+0.6%	+1.9%	+0.6%	+2.3%
Emissions/1990	1.6%	-1.5%	-0.6%	-4.9%

BTA: Border Tax Adjustement

Methodological conclusions

- Methodological innovation
 - Successful integration of stakeholders' contributions
 - Opens discussion on transition and necessary steps
 - Replicable for development of official scenarios?
- Limits
 - Stakeholders' representativeness
 - Would need further iterations between modelers and stakeholders
- Proof by example

Policy recommendations

- Our "acceptable" scenario: CO2 emissions reduction /1990
 - 2020: -33% more ambitious than the -20% European Objective
 - 2050: -68% close but fail in reaching the Factor Four
- Additional measures necessary but less acceptable to reach the Factor Four?
 - Carbon-energy tax
 - Refurbishment obligation
 - ➤ -38% in 2020 and -73% in 2050
- Policies time-dependency
 - > Pathway dependency: inertia vs. energy efficiency
- Responsibility of the government
 - Implement the measures needed to achieve climate objectives
 - Define the required compensations to overcome identified cleavages